Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies.
نویسندگان
چکیده
Mouse models mimicking human diseases are important tools in trying to understand the underlying mechanisms of many disease states. Several surgical models have been described that mimic human myocardial infarction (MI) and pressure-overload-induced cardiac hypertrophy. However, there are very few detailed descriptions for performing these surgical techniques in mice. Consequently, the number of laboratories that are proficient in performing cardiac surgical procedures in mice has been limited. Microarray technologies measure the expression of thousands of genes simultaneously, allowing for the identification of genes and pathways that may potentially be involved in the disease process. The statistical analysis of microarray experiments is highly influenced by the amount of variability in the experiment. To keep the number of required independent biological replicates and the associated costs of the study to a minimum, it is critical to minimize experimental variability by optimizing the surgical procedures. The aim of this publication was to provide a detailed description of techniques required to perform mouse cardiac surgery, such that these models can be utilized for genomic studies. A description of three major surgical procedures has been provided: 1) aortic constriction, 2) pulmonary artery banding, 3) MI (including ischemia-reperfusion). Emphasis has been placed on technical procedures with the inclusion of thorough descriptions of all equipment and devices employed in surgery, as well as the application of such techniques for expression profiling studies. The cardiac surgical techniques described have been, and will continue to be, important for elucidating the molecular mechanisms of cardiac hypertrophy and failure with high-throughput technology.
منابع مشابه
Establishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide
Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کاملP-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease
Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...
متن کاملStudy on the genomic diversity of Hymenolepis nana between rat and mouse isolates by RAPD-PCR
Hymenolepis nana is a common parasite of rodents as well as human intestine. This parasite has beenreported from all over the world, including Iran. The infection rate has been reported up to 40% in someareas. The infection has various clinical manifestations. The parasite could establish severe hyperinfection inpatients with immune deficiency. Regarding the rodents as hosts of the parasite, th...
متن کاملI-11: Dedifferentiation of Mouse Fibroblast Cells by Chemical Induction
Induced pluripotent stem cells (iPSCs) generated by ectopic expression of four transcription factors have great promises for regenerative medicine in humans. Since the initial report of iPSCs by viral transfection, ample efforts have been made in the generation of iPSCs through nonviral approaches. Small molecules offer the advantages of low cost without genomic modification and have been used ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2004